The application of Artificial Intelligence in dental healthcare has a very promising role due to the abundance of imagery and non-imagery-based clinical data. Expert analysis of dental radiographs can provide crucial information for clinical diagnosis and treatment. In recent years, Convolutional Neural Networks have achieved the highest accuracy in various benchmarks, including analyzing dental X-ray images to improve clinical care quality. The Tufts Dental Database, a new X-ray panoramic radiography image dataset, has been presented. This dataset consists of 1000 panoramic dental radiography images with expert labeling of abnormalities and teeth. The classification of radiography images was performed based on five different levels: anatomical location, peripheral characteristics, radiodensity, effects on the surrounding structure, and the abnormality category. This first-of-its-kind multimodal dataset also includes the radiologist's expertise captured in the form of eye-tracking and think-aloud protocol
.